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Intervention Analysis with Applications to 

Economic and Environmental Problems 

G. E. P. BOX and G. C. TIAO* 

This article discusses the effect of interventions on a given response A. Monthly Average of Hourly Readings of O, (pphm) 
variable in  the presence of dependent noise structure. Difference in Downtown LOS Angeles (1955-1972) a 
equation models are employed to represent the possible dynamic 
characteristics of both the interventions and the noise. Some proper- WEIGHTS 

ties of the maximum likelihood estimators of parameters measuring 
level changes are discussed. Two applications, one dealing with the 
photochemical smog data in  Los Angeles and the other wi th changes pph 

in  the consumer price index, are presented. 9 o 

00 


lntcrvenlng events 

1. INTRODUCTION 7 0 

,6 0  

Data of potential value in the formulation of public 
and private policy frequently occur in the form of time ,, 
series. Questions of the following kind oft'en arise : "Given 

3 0  

a known intervention,' is there evidence that change in 
2 0  

the series of the kind expected actually occurred, and, if 
so, what can be said of the nature and magnitude of the 

O 55 56 57 58 59 60 61 62 63 64 65 €6 67 68 69 70 a 72change?" TIME 

For example, in early 1960 two events occurred, here 
With the weight function for estimating the effect of intervening events in 1960. 

referred to jointly as the intervention, which might have 
been expected to reduce the oxidant (denoted by 03) 
pollution level in downtown Los Angeles. These events However, the ordinary t test would be valid only if the 
mere the diversion of traffic by the opening of the Golden observations before and after the event of interest varied 
State Freeway and the coming into effect of a new law about means p1 and pz, not only normally and with 
(Rule 63) which reduced the allowable proportion of constant variance but independently.  In  the examples 
reactive hydrocarbons in the gasoline sold locally. The quoted, however, the data are in the form of time series 
expected effect of this intervention mould be to produce in which successive observations are usually serially 
a more or less immediate reduction (i.e., a step change) dependent and often nonstationary, and there may be 
in the oxidant level in early 1960. Figure A shows the strong seasonal effects. Thus the ordinary parametric or 
monthly averages of oxidant concentration level from nonparametric statistical procedures which rely on in-
1955-72 in downtown Los Angeles [6]. Using this highly dependence or special symmetry in the distribution 
variable and seasonal time series, is there evidence for a function are not available nor are the blessings endowed 
change in level and, if so, what is its magnitude? by randomization. 

Many other problems of this kind have come to our An approach we initiated earlier 121 was to build a 
attention in recent years. These have included the stochastic model which included the possibility of change 
possible effect of the opening of a nuclear power station of the form expected. Such model building is necessarily 
on measurements made on river samples, the possible iterative and, as discussed, e.g., in [3], involves inferences 
effect of the Nixon Administration's Phases I and I1 on from a tentatively entertained model alternating with 
an economic indicator, and the possible effect of pro- criticism of the appropriate tentative analysis. The 
motions, advertising campaigns and price changes on the process proceeds [I] by successive use of Identification 
sale of a product. (tentative specification of the model form), Fitting, and 

Available procedures such as Student's t test for Diagnostic Checking. Using these ideas in the present 
estimating and testing for a change in mean have played context, we come to the following general strategy: 
an important role in statistics for a very long time. 

1. Frame a model for change which describes what is expected 
to occur given knowledge of the known intervention; 

* G.E.P. Box is R. A. Fisher professor and G. C. T i m  is professor and chairman, -- -
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2. 	Work out the appropriate data analysis based on that model; 
3. 	If diagnostic checks show no inadequacy in the model, make 

appropriate inferences ; if serious deficiencies are uncovered, 
make appropriate model modification, repeat the analysis, etc. 

Suppose the data . . . Yt-l, Yt, Ywl, . . . are avail- 
able as a series obtained at equal time intervals. Follow- 
ing, e.g., [I], we will employ models of the general form 

where : 

yt = F ( Y t )  is some appropriate transformation of Yt, say 
log Yt, (Yt)f or Yt itself; 

f (K,r, t) can allow for deterministic effects of time, t, the effects 
of exogenous variables, t;, and in particular, interventions; 

Nt represents stochastic background variation or noise; 
K is a set of unknown parameters. 

I n  Section 2 we discuss a general integrated mixed 
autoregressive moving average model for representing 
the noise N t .  A class of general dynamic models capable 
of representing the effect of interventions is given in 
Section 3. The associated parameter estimation pro-
cedures are given in Section 4. I n  Section 5 two illustra- 
tive examples of intervention analysis are presented. The 
first concerns the Los Angeles oxidant data, and the 
second considers possible effects on the consumer price 
index of recent government actions. Finally, in Section 6, 
the nature of the maximum likelihood estimators for 
some specific level-change parameters is discussed in 
some detail. 

2. 	A STOCHASTIC MODEL FOR THE NOISE 

We suppose that the noise N t  = yt - f(k , t;, t) may be 
modeled by a mixed autoregressive moving average 
process 

p(B)Nt = B(B)at (2.1) 

where : 

1. B is the backshift operator such that Byt = yt-1; 
2. . . . at-l, at, at+l, . . . is a sequence of independently distri- 

where the polynomials 41(B), +z(Bs), 61(B), 02(B8) are of 
degrees pl, pz ,  ql, qz, respectively. 

3. A DYNAMIC MODEL FOR INTERVENTION 

Frequently the effects of exogenous variables T can be 
represented by a dynamic model of the form 

k k 


f(6, ~1 T1 t) = C Ytj  = C Iwi(B)iSj(B>Jtti (3.1) 
j=l i=1 

where : 

1. The ytj represent the dynamic transfer from E t j ;  

2. 	The parameters u. previously lumped together are now 
denoted by 6 and o; 

3. The polynomials in B 

6j(B) = 1 - 61jB - .. . - 6,,jBri and 

wj(B) = woj - wljB - .. . - w,ijB8i 

are of degrees rj and sj, respectively; 
4. 	We shall normally assume that wj(B) has roots outside, and 

6j(B), outside or on, the unit circle. 

I n  general, the individual t t jcould be exogenous time 
series whose influence needs to be taken into account. 
For the present purpose, however, some or all of them 
will be indicator variables taking the values 0 and 1 to 
denote the nonoccurrence and occurrence of intervention. 

For illustration, suppose for a single exogenous variable 
( k  = 1) the model is 

then the transfer y tto the output from El  is generated by 
the linear difference equation 

Figures B(a), B(b) and B(c) show the response yt 
transmitted to the output for various simple dynamic 
systems by an indicator variable representing a step. 
We can denote such an indicator by t t  = St(T)where 

buted normal variables having mean zero and variance ( u ~ ) ~  
which for brevity we refer to as "white" noise; 

3. 	B(B) = 1 - elB - BzB" . . - BB,Bg, p(B) = 1 - plB -
p2B2 . . . - ppBP are "moving average" and "autoregres-
sive" polynomials in B of degrees q and p, respectively; 

4. 	the roots of B(B) lie outside, and those of p(B) lie on or outside 
the unit circle. 

For the representation of certain kinds of homogeneous 
nonstationary series, the operator p(B) is factored so that 

where the roots of 4(B) all lie outside the unit circle. This 
corresponds to the use of a stationary model in the dth 
difference. Also, for seasonal data with period s (e.g., 
monthly data with s = 12), it is often helpful to write 
p(B) = pl(B) pz(BB) and B(B) = B1(B)B2(BB)with cp2(B8) 
= (1 - B8)"42(BB) to allow for seasonal nonstationarity. 

Finally, we entertain a class of noise model of the form 

Similarly, we use P t ( T )for a pulse indicator where 

Referring to the figure for the case we have discussed 
for the Los Angeles 1960 intervention, we would expect 
that the change could be modelled as in Figure B(a), so 
that immediately following the known step change in the 
input, an output step change of unknown magnitude 
would be produced according to 

Sometimes a step change would not be expected to pro- 
duce an immediate response but rather a "first order" 
dynamic response like that in Figure B(b). The a p  
propriate transfer function model is then 
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(6 < 1). It is readily shown that the time constant of 
this system is estimated by (-log,6)-I and the steady 
state gain is w/(l - 6). When 6 approaches the value 
unity, we have the transfer function model 

yt = (wB/(l - B))St(T)  

in which a step change in the input produces a "ramp" 
response in the output (Figure B (c)) . 

Note that since 

any of these transfer functions could equally well be 
discussed in terms of the unit pulse Pt(T),and some- 
times matters are best thought of directly in terms of 
P t (T) .  Thus, suppose we have monthly sales data and 
wish to represent the effect of a promotion or advertising 
campaign lasting less than a month. The simple first 
order model 

yt = (wlB/(l - 6B)]Pt(T) 

might do this (Figure B(d)) with wl  indicating the initial 
increase in sales immediately following the intervention 
and 6 representing the rate of decay of this increase. 

This particular model implies that no lasting effect will 
occur as a result of the intervention. When this might 
not be so, the model B(e) 

Yt = ( (wiB/(l - 6B)) + (wzB/(l - B))]Pt (T)  

could be used in which the possibility is entertained that 
a residual gain (or loss) in sales wz  persists. 

B. Responses to a Step and a Pulse Inputa 

lnplt 

S(T) -
I STEP PULSE 

-= 


(a), (b), (o) show the response to a step input for various simple transfer funo- 
tion models; (d), (e), (f) show the response to a pulse for some models of interest. 

If it were believed that the full impact of intervention 
might not be felt until the second month, after which 
there would be a decay and possibly a residual effect as 
in the previous case, the model 

Yt = (woB -k (wiB2/(1 - 6B)) + (w2B2/(1- B)) ) P , ( T )  

might be appropriate. This would insert a preliminary 
value wo into the output (which in the preceding context 
mould usually be less than wl). The same form of model, 
shifted forward and with some sign changes in the 
parameters, could be useful to represent the effect of 
price changes. In  the application shown in Figure B(f), 
wo  would be positive and would represent an immediate 
rush of buying when a prospective price change was 
announced. The reduction in buying immediately after 
the change occurred would be represented by w l  + w z  

and the final effect of the change would be represented by 
wz which is shown as negative but, of course, could have 
a zero or positive value. 

Obviously, these difference equation models may be 
readily extended to represent many situations of potential 
interest. 

The following points are worthy of note: 

(i) The function yt represents the additional effect of the 
intervention over the noise. In  particular, when is non-
stationary, large changes could occur in the output even with 
no intervention. Fitting the model can make it possible to 
distinguish between what can and what cannot be explained by 
the noise. 

(ii) Intervention extending over several time intervals can be 
represented by a series of pulses. A three month advertising 
campaign might be represented, for example, by three pulses 
whose magnitude might represent expenditure in the three 
months. 

4. CALCULATIONS BASED O N  THE LIKELIHOOD 

Suppose we entertain a model of the form 

where c S = ~  ylj is the transfer function given in (3.1) 
associated with known interventions, N t  assumes the 
form in (2.3), and a time series is available of length 
n + d + sD. Then the likelihood may be obtained in 
terms of an n dimensional vector w whose tth element is 
wt = (1 - B)d( l  - - C$=lyt j ) .  The corre-
sponding model for wl, 

is stationary. Thus, following the argument given, e.g., 
in [I, p. 2731, and with the vector @ having for its g 
elements the stochastic and dynamic parameters in the 
model, the likelihood function may be written 

L(@,(aJ2 I y) = ( 2 ? r ( ~ , ) ~ ) - ( ~ ' ~ )M lI 
e x p  ( - S ( @ ) / ~ ( U , ) ~ )(4.3) 

where M-'(U,)~ is the covariance matrix of the vector 
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w and 
n 

s ( @ )= w'Mw = C [at j y, @I2 (4.4) 
t =-oo 

with [at 1 y, 01 as the expected value of a t  conditional on 
@ a n d  y. 

If none of the roots in (4.2) is close to the unit circle, 
then for moderate and large n, the likelihood is dominated 
by the exponent. The values of the elements of @ minimiz-
ing (4.4), which we shall call the least squares values, are 
to a close approximation also the maximum likelihood 
values. Alternatively, if we introduce a prior distribution 
such that in the neighborhood where the likelihood is 
nonnegligible p(@, a,) rn p(@) (a,)-', we obtain the pos- 
terior distribution 

Again for moderate or large samples and for a non-
informative distribution p(@), the term involving S(0) 
dominates and approximately 

so that the least square estimates correspond with the 
point of maximum posterior density. 

Now if, over the region where the density is ap-
preciable, S(@) is approximately quadratic (and in any 
given case it is easy to check this numerically), then the 
posterior distribution is approximately a multivariate t. 
Then, 

p ( @I Y) $ ( 1 + (C sii(Pi - bi)(Pj - B j ) /  
23  

(n - g ) ( ~ , ) ~ )  (4.7)) - ( n 1 2 )  

where 
sij = 3d"S(@) }/apiaPil a=$ 

and (s,)~ = ~ ( @ ) / ( n- g). Thus, for moderate or large 
n, @ is approximately distributed as multivariate normal 
with mean @ and covariance matrix 

The square roots of the diagonal elements of V(0) will 
be referred to as standard errors (S.E.). 

In practice we may obtain 0, V ( @ )and (s ,)~ using a 
standard nonlinear least squares computer program for 
the numerical minimization of S(@).  To do this we need 
only to be able to compute the quantities [atj y, @] for 
any 0 and we may proceed as follows. Since the model 
for wt is stationary, [at 1 y, @] will be negligible for values 
t 5 -Q where Q is some suitably chosen positive num- 
ber. We, therefore, replace S(@) by the finite sum 
Cr=-Q [at 1 y, @I2. I t  is shown in [I] that the initial 
values [ao], [a-I], . . ., [apo] may often be obtained 
conveniently by a process of "back forecasting" which 
also indicates an appropriate value for Q. 

5. T W O  ILLUSTRATIVE EXAMPLES 

The theory developed here is illustrated in this section 
by two examples, one employing the Los Angeles oxidant 
data and the other, the rate of change in the United 

States consumer price index, to determine the effect of 
known interventions. 

5.1 Example 1 :  The Los Angeles Oxidant Data 

1Zonthly averages of the oxidant (03) level in Down- 
town Los Angeles from January 1955 to December 1972 
are shown in Figure A. 

Identification (Specification) of the Afodel. The periods 
1955-60 and 1960-65 were regarded as containing no 
major intervention which would affect the O3 level. The 
series themselves and the sample autocorrelation func- 
tions within these periods suggest nonstationary and 
highly seasonal behavior. The autocorrelation functions 
of such differences (1 - BL2)yt taken twelve months 
apart show significant correlations only a t  lags 1 and 12. 
This suggests the following model for the noise N t :  

Interventions I1 and Izof potential major importance 
are : 

I I :  	In 1960 the opening of the Golden State Freeway and the 
coming into effect of a new law (Rule 63) reducing the allow- 
able proportion of reactive hydrocarbons in locally sold 
gasoline. 

Iz:From 1966 onwards regulations required engine design 
changes in new cars which would be expected to reduce the 
production of 0 3 .  

As already argued, I1 might be expected to produce a 
step change in the O3 level a t  the beginning of 1960. The 
effect of I 2  might be most accurately represented if we 
knew, for example, the proportion of new cars having 
specified engine changes which were in the pool of all 
cars driven a t  any point in time. Unfortunately, such 
data are not available to us presently. We have, therefore, 
represented the possible effect of intervention as a con- 
stant intervention change from year to year reflecting 
the increased proportion of "new design vehicles" in the 
car population. As explained more fully in [6], the engine 
changes would be expected to slow down the photo- 
chemical reactions which produce O3 and, because of the 
summer-winter atmospheric temperature inversion differ- 
ential and the difference in the intensity of sunlight, the 
net effect would be different in winter when oxidant 
pollution is low from that in summer when it is high. 

A model form was, therefore, tentatively entertained 
for all the available monthly O3 data from January 1955 
to December 1972, which may be conveniently written as : 

+ (1 - OlB)(l - 02B12) 
at (5.2)

(1 - BIZ) 
where 

0, t < January, 1960 
E l 1  = 1, t 2 January, 1960 

"summer" months June-October beginning 1966 
= C:otherwise 

"' = 
"winter" months November-May beginning 1966 
otherwise. 



74 

8.0 

Journal of the American Statistical Association, March  1975 

This allows for a step change in the level of 0 3  be-
ginning in 1960 of size w o l  associated with Il and for 
progressive yearly increments in the 0 3  level beginning 
1966 of woz and woa units, respectively, for the summer 
and the winter months. This representation is admittedly 
somewhat crude, and we hope to improve on it as more 
data become available. 

Est imat ion  Results.  The maximum likelihood estimates 
and the associated standard errors are as follo~vs: 

Parameter MLE S.E. 

W O I  -1.09 
~ 0 2 -0.25 
W 0 3  -0.07 
81 	 -0.24 
Bz 	 0.55 

Since examination of residuals tit fails to show any 
obvious inadequacies in the model, we interpret the 
results as follows. The marginal distributions a posteriori 
of wol, wo2 and wO3 are very nearly normal and centered 
at the maximum likelihood estimate values with the 
approximate standard deviations shown. 

Thus, there is evidence that 

(i) associated with 	I I  is a step change of approximately 60 
= -1.09 units in the level of 0 8 ;  

(ii) associated with 	I 2  there is a progressive reduction in 03. 
Over the period studied, there is a yearly increment of 
approximately 6 0 2  = - .25 in the summer months, but the 
increment (if any) in the winter is slight. 

5.2 Example 2 :  The Rate of Change in the U.S. Consumer 
Price lndex 

A second example supplies further intuitive apprecia- 
tion for the kind of calculations being performed. 

Figure C shows the latter part of a record of the 
monthly rate of change in the consumer price index 
(CPI) given more completely in [4]. The complete (July 
1953 to December 1972) data include 234 successive 
values, 218 of which occurred prior to the institution of 

C. 	Monthly Rate of Inflation of the U.S.Consumer 
Price Index: January 1964-December 1972 

INFLATION 

WIfo.3 

I 
x mow I in effect 
o Phase 11 in effect 

controls in August 1971. As indicated in the figure, in the 
three months beginning September 1971, Phase I control 
was applied; and after that to the end of the recorded 
period, Phase I1 was in effect. 

Inspection of the autocorrelation functions of the first 
218 observations and their differences prior to Phase I 
suggests a noise model of the form 

The maximum likelihood values for the parameters are: 

Parameter MLE S.E. 

Inspection of the residuals and their autocorrelations 
reveals no obvious inadequacies of this model, so we 
adopt'it. 

We now ask the question, ('What are the possible 
effects of Phases I and II?" To answer, we suppose: 

(i) that Phases I and I1 can be expected to produce changes in 
level of the rate of change of the CPI, 

(ii) that the form of the noise model remains essentially the 
same. 

On these assumptions, the approximate model (ignoring 
estimation errors in the noise structure) is 

Y t  	= w o l t t l  + wozt tz  + ( (1 - .84B)/ (1 - B) ]at (5.4) 

where 

1, 	 t = September, October and November 1971 
E t l  	= 0, otherwise 


1, t 2 December 1971 

Erz 	 = (O , 	otherwise 

which may be written 

zt = wolztl + wo2xt2 + at . (5.5) 

The sequences {z t ) ,  (x t l ] ,  {z tz  J may be readily calcu- 
lated from the equations 

(1 - .84B)zt = (1 - B)yt 

(1 - .84B)xtl = (1 - B)Etl 

using, e.g., the initial approximation zl = zll = z12= 0. 
Also, since 

(1 - B)/(I - eB) 
= 1 - B ( l  - 0)(1 + OB + 02B2+. . . )  , 

we have 

zt = yt - Qt-1 , ti = E t i  - E t - i , i  , zt2 = t t 2  - E t - i , 2  

where Qt-l, (t-l,l and (t-l,z are exponentially weighted 
moving averages of values prior to time t ,  e.g., 

gtP1 = (I - e)(ytPl+ ey t -~+ e2yt-3+.. .) . 

We see that (5.5) is very much like the regression 
equations we are all familiar with in which the deviation 
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of yt from its average is related to the deviations of E l l  

and E t 2  from their averages. Notice, however, that the 
model copes with nonstationarity by using not the usual 
arithmetic averages, but local exponentially weighted 
averages which change as the series progresses. 

Using (5.5), the constants wol and woz may now be 
estimated by ordinary linear least squares as 

Parameter MLE S E  

Alternatively, a nonlinear least squares program may be 
employed to estimate wol, wo2 and 6' simultaneously from 
the 
esti

complete 
mates (esse

set 
ntial

of 
ly a

234 data 
s before) : 

values yielding the 

Parameter M L E  S E  

0 
U01 

~ 0 2  

0.85 
-0.0022 
-0.0008 

.05 
0.0010 
0.0009 

The analysis suggests that a real drop in the rate of 
increase of the CPI is associated with Phase I ,  but the 
effect of Phase I1 is less certain. 

6. NATURE OF THE M A X I M U M  LIKELIHOOD 
ESTIMATORS FOR SOME LEVEL 

CHANGE PARAMETERS 

The maximum likelihood estinlators of parameters 
such as wol, woz and W03 in (5.2) and (5.4) which measure 
level changes are functions of the data. I t  is instructive 
to consider the nature of these functions. Several results 
in the summation of series useful in the following discus- 
sion are given in the appendix. 

6.1 One Parameter "Linear" Dynamic Model 

Consider first the dynamic model in (3.2). Formally, 
i t  can be written 

where Q(B) = v(B)/O(B), even though in practice the 
y, are only available for t = 1, . . ., n. Since the roots 
of B(B) all lie outside the unit circle, Q(B) can be ex- 
pressed as a power series in B which converges for 
IBl = 1. 

Here we discuss the situation where 

and investigate the nature of the maximum likelihood 
estimator of p, assuming that (i) the coefficients in Q(B) 
and R(B) are known and (ii) the power series R(B) 
converges for 1 B 1 = 1. 

Letting 
x t  = Q(B)yt and xt = R(B) t t  , 

we can write (6.1) in the form of the usual linear model 

zt = Pxt + a t  (6.3) 

so that the maximum likelihood estimator of is 
n n 


P = C zlxt/C (xd2 
t = l  t = l  

with (6.4) 
n 


Var (8) = ( u J 2 ( C  (xJ2)-l. 
t = l  

For large n, we apply the results (A.6) and (A.7) in 
the appendix to obtain 

m m m 

C ztxt = C Q(B)ytR(B)tt = C EtR(F)Q(B)yt 
t = l  t = l  t =l 

= R(F)Q(B)Ct,(O) 
where F = B-I and 

where 
m 

Cas(k) = C Ptat-k , k = 0, f1, f 2 ,  . . . , 
t = 1  

and for a given k 

Thus, 

8 = R ( F ) Q ( B ) C ~ , ( O ) / R ( F ) R ( B ) C ~ ~ ( O )(6.5) 
and 

Var (8) = (u , )~ /R(F)R(B)C~~(O). 
Making use of (A.lO) in the appendix, we can write 

R(B)R(F) as 
CO 


Suppose that t t  = P t ( T )  is a pulse at  time T, and a 
large number of observations are available before and 
after T. In  this case 

so that 

b = (ro)klR(F)Q(B)yT and Var (8) = (uJ2(ro)-I (6.8) 

where it is understood that B is operating on T. 
Now, nonstationarity in time series data can often be 

removed by differencing. In  what follows we suppose that 
the polynomial v(B) in (6.1) is divisible by (1 - B). We 
consider two special cases of interest. 

Case (i). w(B)/G(B) = PB , (6.9) 

that is, the pulse input P t ( T )  gives rise to a response a t  
time ( T  + 1) measured by /3 which dissipates completely 
after the ( T  + 1)th period. I t  should be noted that with 
any number of periods of pure delay, the response will 
follow the same pattern but be appropriately shifted. I n  
this case, Q(B) = R(B)F so that, from (6.6) and (6.8), 

6 = YT+I -
oo + YT+I-Z),3 C XZ(YT+I+Z (6.10) 

z--1 
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where X 1  = -2rl /ro.  Also, since p ( B )  is assumed di- interventions after 1966 and discuss the step change 
visible by ( 1  - B ) ,  ro + 2C,"=, rl = 0 ,  and hence 
Clm=lX 1  = 1. ( P B / ( l  - B ) ) P t ( T '= wol t t l  , T = December 1959 

As an example, consider the integrated moving average in the level of the series due to the intervening events 
model of order one for the noise term N t  for which around that time. In this case, the noise model is such 

that
p ( B )  = 1 - B and B(B)  = 1 - 0 B  . (6.11) 

p ( B )  = ( 1  - B'2) 
Since 

( 1  - B ) ( l  - F )
R ( B ) R ( F )  = 

(1 - e B ) ( i  - eF)  
00 

= (1  + e )y1 . [2  - ( 1  - e )  c e l - l ( ~ l+ F ~ ) ], 
1=1 

we find that 
x 1  = ( 1  - e)el-I . (6.12) 

Thus, 8 represents a comparison between y T f l  and the 
mean of two exponentially weighted averages, one of the 
observations before time (T + 1)  and the other after, 
with the magnitude of the weights ( 1  - 0)01-I mono-
tonically decreasing as 1 increases. 

This formulation is applicable to situations where the 
response to the pulse input is expected to be short-lived, 
e.g., the effect on the demand for electricity during a 
sudden heat wave in the summer or the sale of beer in 
Wisconsin should the Packers win the Super Bowl. 
Essentially, we are comparing the observation y ~ + lwith 
the neighboring ones to determine if y ~ + 1is an "aberrant" 
or "outlying" observation. The results in (6.10) and 
(6.12) are appealing since, in forming the comparison, 
more weight is given to observations close to the interven- 
ing event and less and less weight to observations remote 
from the time of the event. 

Case ( i i ) .  w (B) /G(B)  = P B / ( l  - B )  . (6.13) 

Here, the response to the pulse P t ( T )is a step change 
in the level of the observations measured by P.  Thus 

and, from (6 .6) )  (6.8) and (A.11) , we have that 

where a1 = (ro)-l(rl - rl+l) so that C,"=,,a~ = 1. 
The quantity P is, therefore, a contrast between two 

weighted averages, one of observations before the inter- 
vening pulse P , ( T ) and the other afterward, where the 
weights are symmetrical. 

As a first example, consider again the integrated 
moving average model in (6.11). We find 

as obtained in [2] .  
As a second example, we return to the model in (5.2) 

for the monthly averages of ozone in downtown Los 
Angeles. For illustration, we shall ignore the effect of 

and 

e ( B )  = ( 1  - OlB)( l  - 02Bl2) . 
Thus, 

(5B ~ ) ( FFj )  
j-0 j=o

R ( B )  R ( F )  = 
( 1  - - (1  - 01F)(1 -BIB) ( 1  O Z B ' ~ )  02Fl2) 

00 m 

= ( C n j B j ) ( C  njFj)  (6.17) 
j = O  j=O

so that from (A .10 ) ,  

The nj can be obtained from the relationship 

By writing n, = 12n + m ,  we find 

where 4 = (e1)12. 
From (6.18) and after some algebraic reduction, we 

obtain, on setting 1 = 121c + s, 

The resulting weight function for the Los Angeles data 
is shown in Figure A above the observations. 

6 .2  The General "Linear" Dynamic Model 

The result in (6.5) can be readily extended to the 
case of more than one parameter. In  the general dynamic 
model with k inputs in (4.1), letting 

we can write 



77 Intervention Analysis with Applications 

where, as before in (6.1), Q(B) = (p(B)/O(B). Assuming 
that all the coefficients in Q(B) and R,(B) are known and 
these k + 1 power series converge for I BI = 1, the 
model is then linear in the k parameters @ = (PI, . . . , Pk)'. 
I t  readily follows that, for large n ,  the maximum likeli- 
hood estimator 0 satisfies the normal equations 

where A is a k X k matrix and b a k X 1 vector such that 

A = [aij] , aij = Ri(F)Rj(B)Ctitj(O) 

b = (bl, . . . , bk)' 

with 
b j  = Ri(F)Q(B)CtI,(0); i, j = 1, . . . ,  k . 

In  what follows, we investigate the special case having 
two parameters, 

In  this model, P1v (B) BPt (T) ,  where (B) is assumed 
to converge for I B 1 = 1, measures the transient effect, 
and P2 represents the eventual change in the level of the 
observations induced by the pulse input Pt(T)(see 
Figure B(e) for the special case v(B) = (1- 6B)-I). 
When fil = 0, the model reduces to that considered in 
(6.13). It is, therefore, of particular interest to know to 
what extent the nature and precision of the estimator of 
fi2 is affected by the presence of P1. We again suppose 
that the noise term is nonstationary so that (p(B) is 
.divisible by (1 - B). 

To facilitate comparison with the model (6.13) we 
again define a quantity R(B) such that 

so that in (6.22) 

and 
R2(B) = R(B) 

I t  follows that,  provided 1 A 1 # 0, 

where 

and all, a12 and az2 are, respectively, the coefficients of 
Bo in the power series 

Some Properties of 6, and b2. 
(i) Both b l  and b2 are linear functions of the observa- 

tions yt. By setting B = F = 1, the sum of the co-
efficients associated with yt is zero for both of these 
functions. Thus, bl and bz are linear contrasts in yt. 

(ii) The estimator bz can be expressed in the form 
m m 

b2 = C allyT+l+l - C a2lyT-1 
1=0 l = O

where (6.25)
m m 

C a11 = C a 2 1  = 1 , 
1=0 1=0 

i.e., a contrast between two weighted averages, one of 
observations on or before the pulse input and the other 
afterward. To see this, since p2 is a linear contrast, it 
suffices to show that CT=oall = 1. 

From the expression for bz in (6.24), letting 

and 

it follows from (A.l l )  that C:= -,dl = azz. 
Further, making use of (A.12) and (A.13), we see that 

a19 in (6.24) is also the coefficient of Bo in R(B)R(F) 
. (1 - F)v(F). If we now set 

and 

we then have C:= -,dl* = alz. The desired result 
follows since 

m 0 0 

C all = l A l - ' ( a ~ ~C dl - alz C dl*) = 1 . 
1=0 1=-m 1=- m 

This property is similar to that of b in (6.15) for the 
model (6.13), except that the weight functions are no 
longer symmetrical. From least squares theory, we have 

and the second term on the right side measures the effect 
of the presence of the term /?lv(B)BPt(T) in the model. 

(iii) One would expect that addition of the parameter 
fil to the model would reduce the precision with which 
P2 could be estimated. A useful measure of the loss of 
information is the variance ratio Var (b2)/Var ( b )  where 
it is understood that the denominator corresponds to the 
model in (6.13). Now 

Var ( )Z) /~ar  (b) = (1 - p2)-' 

where (6.27) 


P = alzl(allazz)t . 


We illustrate these results in terms of a specific 
example. Consider the case of (6.23) in which 

v(B) = (1 - 6B)-1, cp(B)= I - B and O(B) = 1 - OB. 



78 Journal of the American Statistical Association, March 1975 

We find 

where p is given in '  (6.16). I n  this ca,se only the 
weights associated with the observations after the inter- 
vening pulse P t ( T )are affected by the presence of 
P l ( 1  - 6B)-1BPt(T)in the model. The weight function 
is shown in Figure D for 0 = .5 and 6 = .25.  

D. Comparison 	of Weights Associated with y T +  + 

6 ,  and for p(e=.05,  6=.25, 1=0,  1, 2 , .  . .) 
IMPULSE 
RESPONSE 

1 , weights for 3 

Also, for this model the variance ratio is 

v = Var (b2)/var ( j )  
= 1 + ( (1  - 0 ) ( 1  f 6)/(1f 0 )( 1  - 6 ) )  . (6.29) 

The value of this ratio for various values of 0 and 6 is 
shown in the following tabulation : 

Thus, the presence of P 1  in the model can cause large 
increases in the variance of p z ,  compared with b, when 0 
is negative and 6 is positive. 

7. CONCLUDING REMARKS 

I n  the past, much attention has been given to sta- 
tistical analysis linking phenomena which are coinci-
dental in time. In  practice, it is perhaps more often the 
case that a response at  a given point of time depends on 
events, both known and unknown, which have occurred 
not necessarily coincidentally but over the recent past. 
Statistical methods have, in a word, "lacked memory." 
The dynamic characteristics of both the transfer function 

and the noise parts of the model have tended to be 
ignored. The application of time series methods can 
amend this situation. This is illustrated in this article in 
the particuIar case where the object is to study the 
possible effect of interventions in the presence of de-
pendent noise structure. 

APPENDIX 

We here state some useful results in the summation of series. 

Lemma 1 : Let ( u k ) ~ ~  	 ( ~ t ) - , ~be a sequence of numbers and let 
and (yt)-," be two sequences of numbers such that xt = yt -= 0 
for t < 0. If one of the following three double sums is absolutely 
convergent, 

the other two are absolutely convergent and 

Proof of the lemma can be found in any standard text on infinite 
series. 

I t  is convenient to express S1, SZ and S3in terms of the backshift 
operator B and its reciprocal, the forward shift operator F = B-'. 
Letting 

m 	 m 

V ( B ) = kC-a ukBk and V ( F ) = kC-0 ukFk (A.2) 

we can then write 

m 	 m 

81 = t-1x xtV(B)yt and SZ= t -1x ytV(F)xr . (A.3) 

Further, suppose we define 

rn 	 rn 

Cz,(k) = x ytxl-k , C,z(k) = C xtyt-k , k = 0, +2, 
1-1 	 t=1 

so that 
C,,(k) = Cuz(-k) . 64.4) 

The quantity Sgin (6.1) can be expressed as 

and, by letting C,,( -k) = BkCZ,(0),we have 

I t  follows that when the conditions of Lemma 1 hold, 

This result can be readily extended to the following: 

Lemma 8 :  Suppose W ( B )= V 1 ( B )+ Vz(F) where Vl (B)  and 
Vz(F)are two power series in B and F, respectively, such that the 
sum C;=l xlW(B)yt is absolutely convergent. Then 

m 

C xtW(B)yt = W(B)Czu(O). (A.7) 
1 =1 

Lemmu 3 :  Let G(B) = CY=-, gjBi and H(B)  = xt?=--hkBk 
be two power series in B and converge for IB 1 = 1, and let D(B) 

http:p(e=.05
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= G(B)H(B). Then (v) if gj = g-j and hj = 0 j 2 1, then 

where dl = C gjhr-j 
j,-m 
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In particular 

(i) if gj = g-j and hk = h-k, then REFERENCES 
m m 

d t = d - t =  C h , g , + ~ +  E g,h,+~ , l = O , . . . ,  
u -0 u-1-1 

(ii) if gj = 0,j 5 -1 and H(B) = G ( F ) , then 

(iii) if H(B) = 1 - B, then 

dl = gl - 91-1 1 = 0,f l ,  . . ., f m , 
so that E?=I dl = -90 and C?=-, dl = go; 

(iv) if gj = g-j and h, = 0 j 5 -1, then 

m ;  

('4.9) 
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